Mechanism - Decreased CO → Hypersympathetic State and RAAS Activation → Acute Compensation and Chronic Remodeling - Markers of Poor Outcome: LVEF, hyponatremia, high BUN, hypokalemia (90% die from their CHF, 50% from progressive dz and 40% from sudden deathfrom VT/VF) - CHF is not a disease but a manifestation of a disease hence you never say "pt has CHF" rather you always say "pt has CHF 2/2 MI" and when you describe CHF you characterize it in four ways - Low Output vs High Output - Low Output (refer below) - High Output - Decreased O2 Capacity (Anemia) - Increased Metabolic Demand (Pregnancy, HyperTH) - AV Fistulas (Fistula for HD: in arm, Paget's: in bone, Hemangiomatosis: in liver) Causes of Diastolic Dysfunction (EF>50%, decrease in chamber size w/ hypertrophy, abnl MV inflow, - Vasodilation (Wet Beriberi, Shock) - Right vs Left - Systolic vs Diastolic - 2/2... - Look at LVEDP - Low = High Output - High = Systolic/Diastolic then look at EF - Low = Systolic (EF<50%, increase in chamber size) **Causes of Systolic Dysfunction** High = Diastolic or Pericardial Dz | | tissue Doppler abnormalities, etc) | |--|--| | (1) Decreased Contractility Fxn of #/Mass of Myocytes Ventricular MI (dead myocytes) Ischemia (injured myocytes) Restrictive Cardiomyopathies (injured myocytes) (2) Increased Afterload Laplace Eq = Afterload Stress = Pressure x Radius / 2 x Thickness A/P Valve Stenosis (increased pressure) Systemic/Pulmonary HTN (increased pressure) A/P Valve Regurgitation (increased radius) Dilated Cardiomyopathies (increased radius and decreased thickness) (3) Change in Preload | tissue Doppler abnormalities, etc) (1) Abnormal Active Relaxation (occurs early diastole when Ca is pumped out of myocytes resulting in decreased cross-bridge pumping) • Ischemia (injured myocytes don't pump Ca out as well) (2) Abnormal Passive Filling (occurs middle diastole when mitral/tricuspid valves open 2/2 to change in pressure passively allowing blood flow into ventricles) • AS • HTN • Hypertrophic Cardiomyopathy (ventricles are more stiff) • Restrictive Cardiomyopathy (ventricles are more stiff) • Pericardial Dz • Systolic Dysfunction w/ Compensatory Hypertrophy (ventricles are more stiff) | | Fxn of Volume of Blood Low Venous Return (low preload) Extreme Venous Return (very high preload) | T/M Stenosis (3) Abnormal Active Filling (occurs end diastole when atria contract to push the last but of blood into ventricles) | | (4) Other | Atrial MI | | M/T Valve Regurgitation (less blood goes into systemic circulation) | | | • VSD | | | Compensatory Mechanisms
for Systolic Dysfunction | Compensatory Mechanisms
for Diastolic Dysfunction | | Frank-Starling Mechanism (increased ESV and thus EDV leads to moderate increase in preload which leads to increase in # of actin-myosin cross-bridges which leads to increased contraction but at very high load the cross-bridges actually are less than normal) anyhow this compensation is acute with no true changes to the structure of the fibers but over time the following below occurs Hypertrophy (increase myocyte mass) Adrenergic Stimulation (increase HR, vasoconstriction, etc) | None | - Stages of Progression of LV CHF - Stage I: = HR and =SV and thus =CO but ↑ filling pressure suggested by ↑ PCWP - Stage II: ↑HR and ↓SV and thus =CO but ↑↑ filling pressure suggested by ↑↑ PCWP - Stage III: ↑HR and ↓↓SV and thus ↓CO with ↑↑↑ filling pressure suggested by ↑↑↑ PCWP - NB therefore =CO does NOT mean nl fxn therefore one must look at PCWP - Reasons for Decompensation - Progressive of Initial Cause or Additional Cause for HF (refer above but esp Arrhythmias, HTN, MI, PO, new valve dz, excessive BB/CCB) - Noncompliance w/ Diet/Meds or Inappropriate Reduction of Therapy - Increased Venous Return - Increased Sympathetic Tone (parasympathetic neuropathy, caffeine, exercise, illicit drugs, infection, nicotine, pain/stress, adrenergic drugs) - Increased Extracellular Volume (pregnancy, RF, increased sodium intake, high fluid intake, renal failure) S/S • regardless of the etiology (systolic vs diastolic) S/Sx are based on left vs. right | | S/Sx of Left Sided HF | S/Sx of Right Sided HF | |-------------------|---|----------------------------| | Heart Dysfunction | HypoTN | S/Sx of Left Sided Heart | | | - b/c decreased CO | + | | | Tachy | RV Heave | | | - compensatory mechanism | - reflects CM 2/2 | | | Conduction Disturbances | compensatory | | | - esp LBBB which delays impulse signaling contraction from getting to LV which | hypertrophy | | | causes further reduction in CO | BNP 100s (if just true | | | Increase P of S2 | RHF) | | | - b/c of pulmonary congestion | - b/c LV has much | | • | Ventricular S3 Gallop "Kentucky" | more mass than RV | | | reflects atrial blood hitting a pool of blood in ventricle blood during early | | | | diastole b/c of prior low EF aka systolic dysfunction | | | | - can be normally seen in young ("S3") and 3 rd ("S3") trimester pregnant women | | | | - differentiate from fixed split S2, MS w/ opening snap, MVP w/ mid-systolic click | | | | Atrial S4 Gallop "Tennessee" | | | | - reflects atrial blood unable to be forced into ventricle during late diastole b/c | | | | ventricle is too filled up with blood b/c of prior low EF aka systolic dysfunction | | | | OR the ventricle itself is not compliant enough to take on more blood aka | | | | diastolic dysfunction | | | | - can be normally seen in elderly ("S4") who do not have HF but just have a heart | | | | w/ decreased compliance and also seen in athletes | | | | PMI shifted left and down | | | | - reflects CM 2/2 compensatory hypertrophy | | | | B-type/Brain Natriuretic Peptide (BNP) 1000s pg/mcl | | | | - b/c LV has much more mass than RV | | | | - A,B,C = produced by atria, ventricle, vascular endothelium in response to | • | | | increased wall stress (called Brain-B b/c in pigs it is found in brain but in | | | | humans it is found in heart) NP actually suppresses RAS, decreases renal NaCl and water retention, and | PA | | | vasodilates but it does so only to a minor degree such that it cannot reverse the | | | | other stimulatory agents on these systems therefore its only clinical use is to | | | | help in diagnosis, monitor, quantify severity, and assess effectiveness of | | | | treatment | | | | - False +: RF, ACS | | | | - Can be used to predict r/o rehospitalization when measured b/f discharge | | | Pulmonary / | Cephalization of Pulmonary Veins (vessels > bronchi in upper lobes) | Mild Congestion | | Body | ↓ | • JVD | | Congestion | Interstitial Ground-glass Markings (w/ air bronchogram, flattened diaphragm, Kerley B | Kussmaul's Sign (JVD fails | | | Lines aka enlarged lymphatics) aka Interstitial Edema (fluid goes from veins to | to decrease during | | | interstium), peribronchial cuffing (fluid around bronchi when seen on end) | inspiration but actually | | | tachypnea | increases) | | | dyspnea | Hepatojugular Reflex | | | paroxysmal nocturnal dyspnea | (liver pressure raises JVP | | | - sudden intermittent dyspnea that awakens the pt at night forcing the pt sit | as blood has difficulty | | | upright in bed for 10-15min | going into R heart) | | | - much more common in CHF and NOT in primary pulm dz hence asked | Peripheral Pitting | | | orthopnea / nocturnal cough | Pedal/Sacral Edema | | | - constant persistent dyspnea that forces pt to sleep upright the entire night | R sided Pleural Effusion | | | - much more common in CHF and NOT in primary pulm dz hence asked | Weight Gain | | | accessory muscle use | Liver Damage w/↑LFTs | | | - SCM for inspiration and ab muscles for expiration | ↓ | | | speech interrupted by inspiration (telegraphic speech) pursed lip breathing | Moderate Congestion • Anasarca | |---------------|---|---| | | ↓ ↓ | Ariasalca Ascites Liver Damage w/
hepatomegaly and↑↑LFTs RUQ tenderness if
congestion is rapid
enough Severe Congestion Cardiac Cirrhosis w/ nl
LFTs TR | | | • RHF | | | Body | CNS | None | | Hypoperfusion | AMS memory problems Cheyne-Stokes breathing anorexia Renal decreased EAV → decreased blood flow in afferent and decreased Na delivery → sympathetic stimulation and renin secretion decreased BP → carotid/aortic arch baroreceptors stimulation → ADH release → increased distal water reabsorption nocturia during day decreased CO results in decreased renal perfusion and thus RAS activation but during the night b/c skeletal muscles are not being used at all enough blood is shifted to kidney that diuresis occurs Muscles weakness/fatigue skin pale/cool | | | | Tx of S/Sx of Left Sided HF | | | |------------|---|--|--| | Pulmonary | Copyright 2013 - Alexantanopynantas MD PA | | | | Body | (1) Loop Diuretics | | | | Congestion | diuretic resistance occurs and if this occurs then change route (PO to IV), change Hz (single to multiple), use more powerful diuretics | | | | | remember that in the very acute severe setting diuretics are actually harmful | | | | | no mortality benefit just symptom relief | | | | | decreases preload | | | | | immediate effect which is not 2/2 diuretic effect but rather lasix increased PG secretion from kidney which
vasodilates vessels in lung | | | | | (2) Morphine | | | | | decrease Sx of dyspnea/anxiety | | | | | venodilator thereby decreasing preload | | | | | Monitoring | | | | | if severe exact knowledge of intracardiac filling pressures and volumes thru Swan-Catheter is helpful | | | | | < 2g/d salt intake | | | | | limit fluid intake (1.5L/d) | | | | | • BNP | | | | | volume status w/ I/Os, daily weight, etc | | | | | (3) Nitrovasodilators | | | | | venodilator thereby decreasing preload | | | | | (4) Oxygen | | | | | BiPAP to intubation w/ MV | | | | | (5) Position | | | | | sit up w/ feet dangling over side of bed | | | |---------------|---|--|--| | Body | Increase Contractility if Hypotensive | | | | Pulmonary | (1) Inoptropes | | | | Hypoperfusion | (2) Ventricular Assist Devices (LVAD) | | | | | Decrease Afterload if Hypertensive | | | | | (1) Vasodilators | | | | | (2) Intra Aortic Balloon Pump (IABP) | | | | | Decrease Preload | | | | | (1) Venodilators | | | | | Other: nesiritide (Primacor) | | | | | used for short term treatment in acute HF as has mild but good hemodynamic effects but long term M/M has not
been established | | | | | Endogenous: A,B,C = produced by atria, ventricle, vascular endothelium | | | | | VERY MILD renin inhibition | | | | | VERY MILD vasodilation | | | | | VERY MILD inhibition of proximal Na reabsorption | | | - Systolic Dysfunction Treatment Scheme Prolong Survival: ACEI/ARB, H/N, BB, Aldactone/Eplerenone Do Not Prolong Survival but Tx Sx: Loop Diuretics, Digoxin, Antiarrhythmics, Inotropes | ACC/AHA | NYHA | Treatment | |-------------------------------|---|---| | Stage | Class | | | Α | NYHA I | Treat RFs | | + High Risk | Asymptomatic | ACE-I/ARB | | NO Structural Dz | During | V-HeFT II: ACE-I vs hydralazine/nitrates resulted in better ↓M/M | | NO Symptoms | Exertion | SAVE: ↓M/M in NYHA I pts, SOLVD-T: ↓M/M in NYHA II/III pts, CONSENSUS: ↓M/M | | | | in NYHA IV pts, ATLAS: high dose >30mg better than low dose <5mg | | | | HOPE: ramepril is the best ACE-I | | | _ | • ELITE, OPTIMAL, VALIANT, CHARM: ARB same as ACE-I in ↓M/M and can actually | | | A A _ | increase benefit of ACE-I when added on, consider in pt who cannot tolerate ACE-I | | | | or as an add on if you want more ↓M/M | | B
+ High Risk | AICHI | Same +
BB | | + Structural Dz | A | US Carvedilol, MERIT, CIBIS-II, COPERNICUS, CAPRICORN: ↓M/M in NYHA II/III/IV | | NO Symptoms | A A | COMET: carvedilol better than extended release metoprolol b/c of alpha2 blocking | | | MODI | and antioxidant effects | | A A | | Bisoprolol | | | | Avoid in NYHA IV | | | | AICD | | | | to help prevent risk of VT/Vfib and thus sudden death which is the most common | | | | cause of death in CHF | | | opyright 201: | Indication: (refer to EKG notes) | | | CATOR COTTO | NB if pt cannot get an AICD then start amio for the time being | | C | NYHA II | Same + | | + High Risk | Symptomatic | Chronic Symptomatic Tx w/ "LMNOP" | | + Structural Dz
+ Symptoms | During
Exertion | Salt Restriction Aldactone/Eplerenone | | + Symptoms | NYHA III | RALES: ↓M/M in NYHA III/IV pts and EF<35% | | | Symptomatic | • If Cr<2.5 | | | During | Digoxin | | | Normal Daily Activities | Controversial, consider if EF <35% | | | , | Hydralazine+Nitrates | | | | V-HeFT I: placebo vs hydralizine/nitrates resulted in ↓M/M but V-HeFT II showed that ACE-I is superior to H/N | | | | A-HeFT (African American Heart Failure Trial): this is Dr. Yancy's work on | | | | pharmacogenomics in treating AA with HF, increased NO and decreased nitric | | | | oxidants in white and vice versa in AA, there apparently is a different | | | | polymorphism is NOS explaining this difference, long acting nitrates and | | | | hydralazine (combo called BiDil) are good in AA HF pts, Nebivolol (beta-blocker | | | | that has other properties that increase NO) | | | | Consider in pt who cannot tolerate ACE-I/ARB or in AA with NYHA III/IV | | | | AC | | | | if LV thrombus, large akinetic LV segment or EF<30% | | | | BiVentricular PPM | | | | helps resynchronize the heart so that it pumps as effectively as possible Indication: symptomatic despite medical Tx + LBBB + LVEF <35% + LVED >55mm | |--------------------|-------------|---| | D | NYHA IV | Same + | | + High Risk | Symptomatic | Chronic Inotropes | | + Structural Dz | During | LVADs | | + Symptoms | Rest | Transplant (50% survival at 10yrs) | | Refractory to Meds | | Hospice | Diastolic Dysfunction Treatment Scheme - eliminate the underlying etiology - lengthen diastole as much as possible by slowing the heart through BB - similar symptomatic Tx as above but no inotropes b/c there is no systolic dysfunction - milrinone and nitroglycerine have lusitropic effects (promote ventricular relaxation) Copyright 2015 - Alexander Mantas MD PA