Lymphoproliferative Disorders (LPDs)

NB ALL/CCL (immunologically incompetent) vs Myeloma (immunologically competent)

Acute Lymphoblastic Leukemia (ALL)

- Stain: PAS
- RFs
 - Idiopathic (most common)
 - Genetic: Down Syndrome, Klinefelter’s Syndrome, Chromosomal Instability Syndromes (Fanconi, Bloom, NF-1, AT), MTHFR Polymorphisms
 - Infections: HIV, HTLV-1, EBV, CMV, HepB, Varicella?, Influenza? (many often get titers)
 - Why ALL? for the immune system to fix a lymph must exist for every Ag, to accomplish this feat innumerable DNA rearrangements must occur (which occurs during gestation and early childhood) and in doing so mutations become more common

- Epidemiology
 - Bimodal age distribution (~5yo and ~50yo)

- Unique S/S
 - Extra-Medullary Leukemia (EML)
 - Testicular Mass
 - Ant Mediastinal Mass resulting in tracheal narrowing, pleural effusions, SVC syndrome, et al
 - LAD/HSM so big that it looks like lymphoma
 - CNS dz w/ CN neuropathies, leptomeningeal involvement, increased ICP w/ N/V/HA, et al
 - Lytic bone lesions w/ hypercalcemia (esp at chin resulting mental nerve involve and thus numb chin)
 - Bone pain b/c of BM involvement

- Classification
 - Childhood ALL used to be classified under the FAB Morphology System into one of three types: L1 (85% children, 25% adults), L2 (10% children, 65% adults), L3 (5% children, 10% adults) now ALL is classified via Flow Cytometry
 - B-Cell Lineage 75%
 - T-cell Lineage 25% (NB In general T-Cell ALL usually have unfavorable RFs (occur in older pts, have higher WBC counts, and unfavorable cytogenetics) and thus have poorer prognosis)

- Treatment
 - Induction (4wks): Cyclophosphamide + Vincristine + Adriamycin + Dexamethasone (CVAD) ± L-Asparaginase (if child), Rituximab+Methotrexate (if mature B-Cell), Cytarabine (if T-Cell), et al (50% achieve complete remission)
 - Consolidation (4mos): low risk pts (intense chemo meds that are typically different than those used during induction followed by maintenance below) vs high risk pts (HSCT)
 - Maintenance (4yrs): daily 6-mercaptopurine, weekly methotrexate, monthly vincristine and prednisone
 - Other
 - CNS Prophylaxis: all ALL pts need an LP, intrathecal chemo (methotrexate, cytarabine, dexamethasone), systemic chemo (methotrexate, cytarabine, L-asparaginase), and craniospinal radiation (b/c of the high morbidity of radiation most oncologists do not give radiation and studies have found that it has no effect on prophylaxis), begin during induction phase and continues throughout chemo
 - New Meds: hypomethylating agents (Decitabine), histone deacetylase inhibitors (SAHA), ubiquitin proteasome inhibitors (Bortezomib), deoxyuridin analogues (Decafibrine), anti-CD20 (Rituximab), anti-CD52 (Almtuzumab)
 - L-asparaginase (Elspar), Pegaspargase (Oncaspar) Mech: cleaves asparagine to aspartic acid and ammonia and b/c certain neoplastic cells (specifically ALL) have low levels of asparagines synthetase these cells die, SEs: N/V, F, allergic rxn, hepatotoxicity, bleeding diathesis, pancreatitis, hypoinsulinemia, neurotoxicity

- Prognosis
 - Good: 1-10yo, low initial WBC <30k(B)<100k(T), favorable cytogenetic abnormalities, good response to induction Tx by looking at BM Bx (80% survival in children, overall dramatic increase in survival since the 1980s)
 - Bad: <1yo or >10yo, adults, high initial WBC >30k(B)>100k(T), unfavorable cytogenetic abnormalities, poor response to induction Tx, CNS involvement (NB 25% survival in adults, not as many advances as in children and adults typically more of the bad prognostic RFs esp Ph+ Chromosome)

- Relapse
 - 25% relapse rate esp in BM, CNS, Testes
 - Tx: HSCT

Chronic Lymphocytic Leukemia (CLL)

- Mech
 - Monoclonal proliferation of immunologically incompetent but mature B-cells (if polyclonal than infection)
 - CLL and SLL are the same thing, it all depends on the Dx was made: CLL (BM Bx) and SLL (LN Bx)
 - Recent NEJM confirmed the hypothesis that 98% of pts w/ CLL were preceded by a Monoclonal B-cell Lymphocytosis (conversion rate of 1%/yr) characterized by certain flow cytometry suggesting its use as a screening tool

- Epidemiology
 - 10k/yr
~65yo
- most common leukemia of the elderly

- RFs
 - 1st degree relatives

- S/S
 - usually pts are seen by PCP for normal checkups and initially there is a mild lymphocytosis and overall leukocytosis which is often ignored or attributed to some transient infectious process, only after several visits and climbing leukocytosis/lymphocytosis is CLL entertained
 - always must rule out (1) Infectious/Reactive Processes (eg virus, mono, pertussis, toxo, et al) which can give you a lymphocytosis by checking levels Qmo for 3mo and (2) Non-CLL Neoplasms (eg SLL, Mantle Cell, Hairy Cell, et al) by flow cytometry
 - can be asymptomatic w/ dx on PBS or pts can have classic “B” symptoms and LAD
 - Well’s Syndrome (hypersensitivity to bee stings)
 - AIHI or ITP (paradoxic b/c there is hypogammaglobulinemia)
 - Hypogammaglobulinemia w/ increased infections
 - increased incidence of lung/skin cancer

- Complications
 - Richter’s Syndrome (5%) occurs when there is isolated LN transformation into DLBCL and sudden clinical deterioration w/ more LAD and B-Sx

- Dx
 - Smear: lymphocytosis (>10k/μL with nl <2.5/μL) with most being mature appearing while others being smudge cells b/c lymphocytes are delicate and thus susceptible to mechanical disruption from making smear
 - BMx: normal or 30% have infiltration w/B-cells

- Unique Type
 - Hairy Cell Leukemia (rare, seen in old males, mycobacterial infection + pancytopenia + very large SM + dry fibrotic aspirate w/ + TRAP stain)

- Tx
 - Rai Staging System
Stage	Lymphocytosis	Binet Staging System	Median Survival	Tx
I	<10k/μL	A	<10-13yrs	NO treatment just follow pt b/c no cure b/c indolent course, pts typically live a long time and die from other causes, NB also consider Tx if recurrent infections, Dz related Sx, doubling time <1yr, >300k, young age, etc
II	>10k/μL	A	<7-8yrs	NO treatment just follow pt b/c no cure b/c indolent course, pts typically live a long time and die from other causes, NB also consider Tx if recurrent infections, Dz related Sx, doubling time <1yr, >300k, young age, etc
III	+ anemia (<33) not AIHA rather 2/2 BM involvement	B	<3yrs	Chemo: Alkylating Agent (cyclophosphamide-CG et al), Nucleoside Analogue (fludarabine-F, pentostatin-P, et al), MAB (Rituxan-R) usually FR, FC, FCR, PCR, etc
IV	+ thrombocytopenia (<100) not ITP rather 2/2 BM involvement	C	<1-3yrs	Chemo: Alkylating Agent (cyclophosphamide-CG et al), Nucleoside Analogue (fludarabine-F, pentostatin-P, et al), MAB (Rituxan-R) usually FR, FC, FCR, PCR, etc
				Steroids if AIHA/ITP
				Anti-CD (rituxamb = anti-CD20, alemtuzumab = anti-CD52, et al)
				Radiation if symptoms due to mass effect of lymphoid tissue
				IVIG if infection and IgG <0.3g/dL
				HSCT

Plasma Cell Dyscrasias aka Monoclonal Gamma-opathies aka Paraproteinemias
- Definition
 - Plasma Cell Neoplasm in BM producing monoclonal Ig (either or both or neither light/heavy chains)
 - +SPEP/-UPEP (are not filtered by kidney and thus collect in blood)
 - 60% IgG
 - 17% IgA
 - 13% IgM
 - 2% Biclonal
 - 0.5% IgD
 - Rare IgE
 - -SPEP/+UPEP (are filtered by kidney and thus collect in urine and light chains are called “Bence Jones” proteins)
 - 5% Only Light Chains (kappa/lambda)
- SPEP/UPEP
 - 5% Non-Secretors

- Epidemiology
 - 15k cases/yr (1% of all cancers), 10k deaths/yr (2% of all cancer deaths) pretty high mortality
 - ~70yo, African American, Female
 - RFs: unclear but there are associations w/ low income, radiation, diesel/gas/oil, farmers, miners, sheet metal workers, lumberers (NOT smoking)

- S/S
 - Primary (due to the presence of the actual neoplasm in BM)
 - BM: pancytopenia due to BM replacement aka myelophthisis, seen on MRI as reduced BM fat
 - Secondary (due to secretion of monoclonal paraprotein, etc)
 - Bone: multiple "punched out" lytic lesions in calvarium, vertebra, long bones due to osteoclastic activating and osteoblastic inhibitory factors secreted by neoplastic plasma cell onto overlying bone resulting in ostalgia/fractures (long bones), back pain/vertebral collapse/cord compression (vertebra), and diffuse osteoporosis, not osteoblastic hence bone scans not helpful rather look for lytic bone lesions on plain radiographic skeletal survey
 - CNS: various neurologic disease due to hypercalcemia, spinal cord or cranial nerve compression from plasmacytomas, et al
 - Renal: A/CKD due to formation of proteinaceous casts of filtered light chains (Bence Jones proteins) in interstitium causing RTA2 and nephrotic syndrome aka "myeloma kidney", metastatic calcification due to hypercalcemia/calcuria, urate nephropathy, type I cryoglobulinemia, renal plasmacytoma, recurrent pyelo, et al
 - ID: recurrent infections esp encapsulated bugs due to suppressed normal Ig production (most common cause of death usually pyelo or pulmonar)
 - Other: Rouleaux formation (Ig stimulates RBC to aggregate together forming a "stack of poker chips"), coagulopathy (unknown but not clinically significant), amyloidosis (not clinically significant), low quantitative immunoglobulins, low AG

- Diagnosis
 - Serum/Urine Protein Electrophoresis (S/UPEP): only shows you that there is a monoclonal "M" spike in the gamma section, also gives you a crude quantification of the M-protein which can be used to monitor disease
 - Serum/Urine Immunofixation (S/UIF): actually identifies and quantifies the type of Ig that makes up the "M" spike (eg. 5g/dL of IgG) you can also order "Quantitative Immunoglobulin" to assess levels of the normal immunoglobulins
 - "Free Light Chain Assay": new test which is more sensitive than above thus able to diagnose non-secretors as oligosecretors

- Types
 - Monoclonal Gamma-opathy of Unknown Significance (M-GUS)
 - Mod BM Bx Clonal Plasma Cell (<10%)
 - Mod M-Protein (<3g/dL)
 - No Evidence of Organ Damage
 - NB prevalence ~3% in >50yo population, ~5% in >70yo population, ~7% in >85yo population, ~1%/yr or ~10% in 10yrs or ~20% in 20yrs convert to Smoldering MM, WM, amyloidosis, or malignant lymphoproliferative disorder (paraprotein) with 0.5 (low) vs 3.0 (high) is the most imp RF for conversion) therefore f/u w/ SPEP in 6mo and Qyr thereafter
 - Smoldering Multiple Myeloma (MM)
 - High BM Bx Clonal Plasma Cell (>10%)
 - High M-Protein (>3g/dL)
 - No Evidence of Organ Damage
 - NB ~2%/yr convert to Symptomatic MM
 - Symptomatic Multiple Myeloma (MM)
 - High BM Bx Clonal Plasma Cell (>10%)
 - High M-Protein (>3g/dL)
 - Evidence of Organ Damage
 - Solitary Plasmacytoma
 - a distinct collection of plasma cells without significant BM involvement (<5%) usually found in the UR or GI tract
 - POEMS (Polyneuropathy, Organomegaly, Endocrinopathy, M protein, Skin changes)
Plasma Cell Leukemia
- plasma cell count >2000/mcL

Lymphoplasmacytic Lymphoma aka Waldenstrom’s Macroglobulinemia
- **Definition**
 - Acts more like a low-grade NHL (lymphoplasmacytic lymphoma) that secretes IgM than a true plasma cell dyscrasia
 - 90% IgM
 - 5% IgA
 - 5% IgG

- **Diagnosis**
 - High BM Bx Clonal Plasma Cell (>10%)
 - High M-Protein specifically IgM (>3g/dL)
 - Specific/Unique evidence of organ damage
 - YES BM
 - NO Bone
 - NO CNS
 - NO Renal
 - NO ID
 - Other
 - **Hyperviscosity Syndrome**: b/c IgM is big it can increase blood viscosity
 - S/S: visual impairment w/ “sausage” veins on fundoscopy, headache, dizziness, AMS, CHF, pulmonary infiltrates, mucosal bleeding due to abnormalities in pit fnk, Type I cyroglobulinemia
 - Dx: relative serum viscosity of >5 (relative serum viscosity defined as the ratio of viscosity of serum to H$_2$O w/ normal being 1.8)
 - Tx: requires emergency plasmapharesis
 - **HSM/LAD**: not typically seen in MM
 - **Peripheral Neuropathy**: IgM deposits against myelin-associated glycoprotein

- **Treatment**
 - treated more like a lymphoma than MM

Prognosis
- Labs: refer below but it has been found that increased beta2-microglobulin is the MOST important poor prognostic factor
- **Cytogenetics**: k-RAS, aneuploidy, del13q, t(4:14 or 14:16) (poor prognosis)

<table>
<thead>
<tr>
<th>International Staging System (ISS)</th>
<th>(the current staging system but newer ones are being developed which incorporate cytogenetics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td>beta2-microglobulin (mg/L)</td>
</tr>
<tr>
<td>I</td>
<td><3.5</td>
</tr>
<tr>
<td>II</td>
<td>3.6-5.4</td>
</tr>
<tr>
<td>III</td>
<td>>5.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durie-Salmon Staging System</th>
</tr>
</thead>
<tbody>
<tr>
<td>(used less after the emergence of the ISS, also fails to incorporate renal function or cytogenetics)</td>
</tr>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
| I | Hb >10g/dL
Ca ≤12mg/dL
<1 Lytic Bone Lesions
IgG <5g/dL or IgA <3g/dL or Urine Light Chain <4g/d | 61mo |
| II | Hb 8.5-10g/dL
Ca 12mg/dL
1-5 Lytic Bone Lesions
IgG 5-7g/dL or IgA 3-5g/dL or Urine Light Chain 4-12g/d | 55mo |
| III | Hb ≤8.5g/dL
Ca ≥12mg/dL
≥5 Lytic Bone Lesions
IgG ≥7g/dL or IgA ≥5g/dL or Urine Light Chain ≥12g/d
Cr <2mg/dl then Stage IIIA vs ≥2mg/dl then Stage IIIB | 30mo (Stage IIIA)
15mo (Stage IIIB) |

Treatment
- **MGUS / Smoldering MM**
 - no Tx as studies show that early Tx does not improve survival
- **Symptomatic MM**
General: 4 cycles of various regimens of chemo (usually all three below) then HSCT (can be done in <1/2 of pts) w/ subsequent chemo, assess response by following M-protein level and BM, relapse is common and when it occurs use a different chemo regimen, in general MM is incurable but good remissions can be achieved

Adjuvant
- Bisphosphonates/Ortho Surgery/Analgesics for bone pain
- Local radiation for symptomatic plasmacytomas
- Plasmapharesis for hyperviscosity syndrome
- IVIG for recurrent infections
- Hydration, etc for hypercalcemia
- Erythropoietin for anemia

Chemo
- Angiogenesis Inhibitors: lenalidomide (Revlimid)
 - Mech: these drugs used to be used as anti-emetics in pregnant women but was found to cause significant limb deformities in fetuses b/c of anti-angiogenic effects, it was theorized that it would be helpful in treating cancer b/c tumors require new vessels for survival
 - SEs:
 - NB thalidomide (Thalomid) was the first drug created but has many SEs
- Proteasome Inhibitors: bortezomib (Velcade)
 - Mech: proteasomes normally “eat” up proteins in cells hence their effectiveness in a paraproteinemla
 - SEs: peripheral neuropathy
- Steroids
- Old: melphalan (Alkeran)

Lymphoma
- Lymphoma (solid tumor of lymphocytes involving LNs, spleen, etc) vs leukemia (liquid tumor of lymphocytes involving blood and BM) but in general each has a component of the other
- NB WHO has recently modified the Revised European and American Lymphoma (REAL) Classification dividing lymphomas into (1) B-cell lymphomas (80%) (2) T/NK- cell lymphomas (10%) (much more aggressive than B-cell, worse prognosis, involve skin, usually require HSCT) (3) Hodgkin’s lymphomas

<table>
<thead>
<tr>
<th>Hodgkin’s Lymphoma (HL)</th>
<th>NON-Hodgkin’s Lymphoma (NHL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology</td>
<td></td>
</tr>
<tr>
<td>• Incidence: 7,800/yr</td>
<td>• Incidence: 66,000/yr</td>
</tr>
<tr>
<td>• M>F (except Nodular Sclerosis Type)</td>
<td>• M=F (except Mantle Cell)</td>
</tr>
<tr>
<td>• Bimodal Age Distribution (20s and >50) much worse the older the patient</td>
<td>• Unimodal Age Distribution (>50yo)</td>
</tr>
<tr>
<td>• Despite all of our advances we still do not know the etiology of HL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathology</th>
<th>LN</th>
<th>LN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Other Cells: Inflammatory Milieu w/ Lymphocytes, Eosinophils, Plasma Cells, etc that spills over into blood (majority)</td>
<td>• Neoplastic Cells (majority)</td>
<td></td>
</tr>
<tr>
<td>• Neoplastic Cell: Reed-Sternberg (RS) Cells (minority)</td>
<td>• Neoplastic cells outnumber non-neoplastic cells</td>
<td></td>
</tr>
<tr>
<td>o non-neoplastic cells outnumber neoplastic cells</td>
<td>o >85% B Cells</td>
<td></td>
</tr>
<tr>
<td>o *** severity × RS cells × 1/lymphocytes ***</td>
<td>o Other Cells: ? (minority)</td>
<td></td>
</tr>
<tr>
<td>o Diagnostic feature of HL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o giant cells with bilobed nucleus w/ prominent eosinophilic nucleoli w/ surrounding clear space called “owl’s eyes”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o arise from B-cells (2% T-cells) but lack certain CD markers including 15, 30, 70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Signs/Symptoms

Lymphadenopathy
- Reactive/-itis: <2cm, TTP, soft, mobile, cervical/axillary/inguinal, <40yo, lasting <4wks, benign context, viral (HIV, EBV, CMV, HSV, VZV, Hepatitis, Measles, Rubella), bacteria (staph, strep, various atypicals), fungi, parasites, infiltration (amyloid, sarcoid)
- Neoplasm: >2cm, non tender unless massive, hard, fixed, supraclavicular is always abnl, >40yo, lasting >4wks, worrisome context, leukemia/lymphoma, mets
- NB do not empirically give abx to see if reactive vs malignant

LAD:
- superficial and regional (usually cervical supraclavicular and occasionally mediastinal) begins at a single group of LNs and then spreads with orderly, anatomic spread to contiguous adjacent LNs with rare extranodal involvement but if it is it is usually mediastinum, lung, liver, bone, BM
- S/S: B Symptoms (F>38C w/o evidence of infection that is often called Pel-Epstein Cyclic Fever, drenching night sweats, weight loss >10% of body weight the past 6 months, can be seen in other cancers but classically associated w/ HL), Pruritus, LNs hurt following ETOH, Cough, Dyspnea, Hoarseness, SVC Syndrome, eventually spreads to BM w/ leukemic Sx

Prognosis

If not treated then <5% live after 5yrs with most dead at 3yrs BUT if treated regardless of type and stage 80% can be cured

RFS:
- EBV
- Post-Transplant LPDs (PTLPDs)
 - 5% of pts w/ solid organ transplants
 - Highest risk during first year
 - EBV+
 - Often more aggressive than nl lymphomas
 - Tx: lower degree of immunosuppression allowing pts own immune system to attack EBV and if this doesn't work then Tx w/ chemo

HIV
- Often more aggressive than nl lymphomas
- HIV imparts 60-100x increased r/o NHL
- NHL is considered an AIDS defining malignancy
- Concurrent HARRT and chemo likely provides additional benefit
- 67% DLBCL, 20% American Burkitt’s, 16% Primary CNS Lymphoma, 5% Primary Effusion Lymphoma (HHV-8), etc

EBV (HL, African Burkitt’s, etc)
- HCV (Waldenstrom’s Macroglobulinemia, Nodal Margin/Splenic Zone B-Cell Lymphoma, etc)
- H. pylori (Gastric MALT Lymphoma)
- Sjogren’s

Prognosis

If not treated then <5% live after 5yrs with most dead at 3yrs BUT if treated regardless of type and stage 80% can be cured

RFS:
- EBV
- Post-Transplant LPDs (PTLPDs)
 - 5% of pts w/ solid organ transplants
 - Highest risk during first year
 - EBV+
 - Often more aggressive than nl lymphomas
 - Tx: lower degree of immunosuppression allowing pts own immune system to attack EBV and if this doesn't work then Tx w/ chemo

HIV
- Often more aggressive than nl lymphomas
- HIV imparts 60-100x increased r/o NHL
- NHL is considered an AIDS defining malignancy
- Concurrent HARRT and chemo likely provides additional benefit
- 67% DLBCL, 20% American Burkitt’s, 16% Primary CNS Lymphoma, 5% Primary Effusion Lymphoma (HHV-8), etc

EBV (HL, African Burkitt’s, etc)
- HCV (Waldenstrom’s Macroglobulinemia, Nodal Margin/Splenic Zone B-Cell Lymphoma, etc)
- H. pylori (Gastric MALT Lymphoma)
- Sjogren’s

Prognosis

If not treated then <5% live after 5yrs with most dead at 3yrs BUT if treated regardless of type and stage 80% can be cured

RFS:
- EBV
- Post-Transplant LPDs (PTLPDs)
 - 5% of pts w/ solid organ transplants
 - Highest risk during first year
 - EBV+
 - Often more aggressive than nl lymphomas
 - Tx: lower degree of immunosuppression allowing pts own immune system to attack EBV and if this doesn't work then Tx w/ chemo

HIV
- Often more aggressive than nl lymphomas
- HIV imparts 60-100x increased r/o NHL
- NHL is considered an AIDS defining malignancy
- Concurrent HARRT and chemo likely provides additional benefit
- 67% DLBCL, 20% American Burkitt’s, 16% Primary CNS Lymphoma, 5% Primary Effusion Lymphoma (HHV-8), etc

EBV (HL, African Burkitt’s, etc)
- HCV (Waldenstrom’s Macroglobulinemia, Nodal Margin/Splenic Zone B-Cell Lymphoma, etc)
- H. pylori (Gastric MALT Lymphoma)
- Sjogren’s

Prognosis

If not treated then <5% live after 5yrs with most dead at 3yrs BUT if treated regardless of type and stage 80% can be cured

RFS:
- EBV
- Post-Transplant LPDs (PTLPDs)
 - 5% of pts w/ solid organ transplants
 - Highest risk during first year
 - EBV+
 - Often more aggressive than nl lymphomas
 - Tx: lower degree of immunosuppression allowing pts own immune system to attack EBV and if this doesn't work then Tx w/ chemo

HIV
- Often more aggressive than nl lymphomas
- HIV imparts 60-100x increased r/o NHL
- NHL is considered an AIDS defining malignancy
- Concurrent HARRT and chemo likely provides additional benefit
- 67% DLBCL, 20% American Burkitt’s, 16% Primary CNS Lymphoma, 5% Primary Effusion Lymphoma (HHV-8), etc

EBV (HL, African Burkitt’s, etc)
- HCV (Waldenstrom’s Macroglobulinemia, Nodal Margin/Splenic Zone B-Cell Lymphoma, etc)
- H. pylori (Gastric MALT Lymphoma)
- Sjogren’s
Staging

New: Ann Arbor Staging System w/ Cotswolds Modifications

NB mainly used for HL not so much NHL b/c most are automatically generalized

- **Stage 1:** 1 LN group (aka contiguous = LNs side by side) OR extra-lymphatic organ (except liver or BM)
- **Stage 2:** 2 LN groups (aka non-contiguous) OR extra-lymphatic organs on same side of diaphragm
- **Stage 3:** >2 LN groups (aka non-contiguous) OR extra-lymphatic organs on both sides of diaphragm
- **Stage 4:** extranodal tissue including liver and BM
 - x = bulky disease where greatest diameter of mediastinal mass / max diameter of chest wall is >1/3 OR greatest diameter of ab mass is >10cm
 - A = no B symptoms vs B = any B symptoms (worse prognosis)
 - E = involves a single contiguous extranodal site (pts can have for example Stage IE where only 1 LN group is involved but they also extranodal tissue involvement, in this case they are not automatically Stage IV)
 - H = hepatic involvement
 - S = splenic involvement
 - Eg. Stage IIXEHS

Old: Staging Laparotomy

- where you perform liver resection biopsy, splenectomy, periaortic LN dissection, and iliac crest BM biopsy
- rarely performed these days
- mortality of 1.5% and morbidity of 6% w/ abscesses, rarely performed these days

Tx

- **Stage I/II and NO RFs:** 2 cycles of ABVD (some just do IFRT if small)
- **Stage I/II and YES RFs:** 4 cycles of ABVD + RT
- **Stage III/IV:** 8 cycles of ABVD or BEACOPP/StanfordV + RT
- Refractory/Relapsed: H SCT
- RFs: >50yo, B Sx, high ESR, bulky dz, E stage
- ABVD (Adriamycin aka doxorubicin + Bleomycin + Vinblastine + Dacarbazine) each cycle takes 4d, can be done outpt, 2-3wks b/t cycles
- Other: Stanford V (Doxorubicine + Bleomycin + Vinblastine but NO Dacarbazine) rather Cyclophosphamide + Vincristine + Procarbazine + Prednisone, BEACOPP (Bleomycin + Etoposide + Adriamycin aka doxorubicin + Cyclophosphamide + Vincristine + Procarbazine + Prednisone)
- some just do chemo alone given the long term toxicity of RT and while there is slightly worse disease free state overall survival time is the same
- NB MOPP used to be the original chemo but is no longer used
- IFRT (Involved Field Radiotherapy) NB historically RT was Mantle Field (cervical, supravclavicular, mediastinal, axillary) and Inverted Y Field (peri-aortic, spleen, iliac, inguinal, femoral) (developed at Stanford) but there was high (1%/yr) r/o solid tumors and hypothyroidism
- now wide RT is used for bulky disease (>10cm)
- NB pts are at increased risk for second malignancies: AL, NHL, Lung Cancer, Breast Cancer (1% lifetime) along w/ infertility and hypothyroidism

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (rare)</td>
<td>HSCT, watch for TLS</td>
</tr>
<tr>
<td>II (rare)</td>
<td>treat like ALL prophylaxis, lymphoblastic leukemias</td>
</tr>
<tr>
<td>III</td>
<td>Single but >10cm), all pts get CNS if high risk (high LDH and multifocal dz or single but >10cm), all pts get CNS prophylaxis, lymphoblastic leukemias</td>
</tr>
</tbody>
</table>
| IV | Very Aggressive: **CODOX-M + R** (Cyclophosphamide + Oncovorin aka vincristine + DOXorubicin + Methotrexate) add Rituximab if CD20+ (NB also add RT for bulky disease) add methotrexate if CNS, paranasal sinus, testicular, breast, periorbital, paravertebral or BM involvement, NB prednisone is lympholytic and many times are already on partial Tx b/c they are often on steroids for other reasons
- **Very Aggressive:** **CODOX-M + R** (Cyclophosphamide + Oncovorin aka vincristine + DOXorubicin + Methotrexate) add Rituximab if CD20+, add IVAC (Ifosfamide + Etopoide? + ? + Cytarabine) if high risk (high LDH and multifocal dz or single but >10cm), all pts get CNS prophylaxis, lymphoblastic leukemias treat like ALL, following remission the H SCT, watch for TLS
| Relapsed Disease | Salvage High Dose Chemo + HSCT |

Notes:

- **Refractory/Relapsed:** HSCT, watch for TLS
- Stage I/II and YES RFs: 4 cycles of ABVD
- Stage III/IV: 8 cycles of ABVD or BEACOPP/StanfordV + RT
- Refractory/Relapsed: HSCT
- RFs: >50yo, B Sx, high ESR, bulky dz, E stage
- ABVD (Adriamycin aka doxorubicin + Bleomycin + Vinblastine + Dacarbazine) each cycle takes 4d, can be done outpt, 2-3wks b/t cycles
- Other: Stanford V (Doxorubicine + Bleomycin + Vinblastine but NO Dacarbazine) rather Cyclophosphamide + Vincristine + Procarbazine + Prednisone, BEACOPP (Bleomycin + Etoposide + Adriamycin aka doxorubicin + Cyclophosphamide + Vincristine + Procarbazine + Prednisone)
- some just do chemo alone given the long term toxicity of RT and while there is slightly worse disease free state overall survival time is the same
- NB MOPP used to be the original chemo but is no longer used
- IFRT (Involved Field Radiotherapy) NB historically RT was Mantle Field (cervical, supravclavicular, mediastinal, axillary) and Inverted Y Field (peri-aortic, spleen, iliac, inguinal, femoral) (developed at Stanford) but there was high (1%/yr) r/o solid tumors and hypothyroidism
- now wide RT is used for bulky disease (>10cm)
- NB pts are at increased risk for second malignancies: AL, NHL, Lung Cancer, Breast Cancer (1% lifetime) along w/ infertility and hypothyroidism
- **Histopathologic classification** (indolent vs aggressive vs very aggressive) NOT stage b/c almost all are already Stage IV
- **Indolent:** goal is symptom management w/ IFRT for bulky disease, transfusions for cytopenias, etc, some use single chemo agents (purine nucleoside analogues, oral alkylating agents, rituximab, radio-labeled monoclonal antibodies), others just leave it alone b/c they are so slow growing, watch for FL to transform into DLBCL
- **Aggressive:** **R + CHOP** (Cyclophosphamide + Hydroxydaunorubicin aka doxorubicin + Oncovorin aka vincristine + Prednisone) add Rituximab if CD20+ (NB also add RT for bulky disease) add methotrexate if CNS, paranasal sinus, testicular, breast, periorbital, paravertebral or BM involvement, NB prednisone is lympholytic and many times are already on partial Tx b/c they are often on steroids for other reasons
Prognosis

IPS (International Prognostic Score)
- Albumin <4 g/dL
- Hb <10.5 g/dL
- Male
- Age >45yo
- Stage IV
- WBC >15k/mcL
- Lymph <600/mcL or <8%

\[0,1,2,3,4,5 = 84,77,67,60,51,42\% \text{ 5yr survival rate}\]

IPI (International Prognostic Index)
- Age >60yo
- Stage III/IV
- ECOG Performance Status >2
- >2 extranodal areas
- LDH >ULN
- Tumor Burden (systemic Sx, >3LNs >3cm, >1LN >7cm, Pt<100k, etc)

\[1,2,3,4,5 = 87,67,55,44\% \text{ 5yr survival rate}\]

Work-Up

Immunophenotyping and Cytogenetics: Leukemia & Lymphoma Panel

Pathology: FNA (rarely done b/c you need histology but sometimes you can’t help it if the only LN is hard to get to like retroperitoneal and avoid incisional b/c just better for pathology if they have the whole LN) → Core → Excisional Bx and BM Bx but some argue not doing for Stage I/II HL (± LP if neuro symptoms, etc)
- Bx if depending on your suspicion of a malignant LN
- BM Bx + means metastatic disease and is highly prognostic for the presence of CNS disease
- Imaging: CT chest/ab/pelvis but not entirely sensitive therefore also get a PET scan (± MRI Head if neuro symptoms, ± Bone Scan if bony pain or elevated alkphos, etc)
- Labs: CBC, LFTs, Albumin, LDH, Uric Acid, Phos, Ca
- Serology: HIV, HB/CV, EBV and connective tissue disorders
- Flow Cytometry (tells you CD)
- FISH (tells you gene rearrangements)

Do an LP for the aggressive lymphomas and if lymphomas already involve testicle, paranasal sinus, or eye

HL (95%)
- More curable w/ 95/65% cure rates if early/advanced

<table>
<thead>
<tr>
<th>Incidence</th>
<th>Patient</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td><1%</td>
<td>>50yo, Male</td>
<td>many RS cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>few lymphocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diffuse fibrosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>typically retroperitoneal LNs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>poor prognosis</td>
</tr>
</tbody>
</table>

20%	40yo, Male	many RS cells
		few lymphocytes
		many other cells including eosinophils, histiocytes, plasma cells (hence “Mixed Cellularity”)
		typically subdiaphragmatic LNs
		moderate prognosis

9%	20yo, Male	few RS that are atypical called “popcorn cells” b/c they have B-Cell antigens and they look slightly different
		many lymphocytes
		best prognosis

70%	20yo, Female	few RS that are atypical called “lacunar cells” b/c they have clear areas surrounding the cells
		many lymphocytes
		banding fibrosis creating nodules
		typically mediastinal LNs

- NON-Classical HL (5%)
 - Nodular Lymphocyte Predominant (NLP)

NHL

these are subsequently divided into indolent (slow/stable cancer, no symptoms, >40yo, advanced stage w/ widespread LAD and BM/liver/spleen involvement, typically incurable but not a big deal, Tx can be deferred until pt becomes symptomatic or when disease progresses, sometimes disease is spontaneously regresses, median survival is 10yrs) vs aggressive (fast/progressive cancer, w/ symptoms, any age, early stage w/ one organ/compartment involvement, chemo/radiation is necessary w/ 50% being cured quickly or 50% dying quickly)

- Not sure what small vs large and cleaved vs non-cleaved means???

<p>| Indolent Slow Growing but Incurable (35-40%) Survival (years if unTx) Low Grade |
|----------------------------------|---|---|
| Follicular Lymphoma (20%) mixed cleaved, 10% transform into DLBCL |
| Small Lymphocytic Lymphoma (SLL) (5%) (related to CLL, essentially SLL and CLL are one disease and the term that is used is essentially dependent on which tissue (blood or LN) was used to make the diagnosis) |
| Various Marginal Zone Lymphomas (5%) including primarily MALToma, etc, 2/2 chronic antigenic stimulation esp, Gl(H.pylori)/Resp(?)/Mouth(?)/Spleen(HCV) |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive</td>
<td>- Diffuse Large B Cell Lymphoma (DLBCL) (30%)</td>
</tr>
<tr>
<td></td>
<td>o can transform from follicular lymphoma by acquiring t(14;18) resulting in over-expression of bcl-2 protein</td>
</tr>
<tr>
<td></td>
<td>o Richter’s Transformation (from CLL/SLL) 10% risk, heralded by F, rapid LAD, rising LDH</td>
</tr>
<tr>
<td></td>
<td>o Life expectancy measured in months if unTx</td>
</tr>
<tr>
<td></td>
<td>o Almost all pts respond to Tx but nearly ½ will become refractory</td>
</tr>
<tr>
<td></td>
<td>o Various T-cell Lymphomas (5%) including primarily Peripheral T-Cell Lymphoma Not Otherwise Characterized and Mycosis Fungoides and Sezary Syndrome (these are cutaneous lymphomas which form Pautrier microabscesses in the skin filled with neoplastic lymphocytes, seen in black males), etc</td>
</tr>
<tr>
<td></td>
<td>o NB ALL HODGKIN’S LYMPHOMAS ARE CONSIDERED AGGRESSIVE</td>
</tr>
<tr>
<td></td>
<td>- Various T-cell Lymphomas (5%) including primarily Peripheral T-Cell Lymphoma Not Otherwise Characterized and Mycosis Fungoides and Sezary Syndrome (these are cutaneous lymphomas which form Pautrier microabscesses in the skin filled with neoplastic lymphocytes, seen in black males), etc</td>
</tr>
<tr>
<td></td>
<td>- NB ALL HODGKIN’S LYMPHOMAS ARE CONSIDERED AGGRESSIVE</td>
</tr>
<tr>
<td></td>
<td>- Burkitt’s Lymphoma (1% adult but 30% child classically <35yo M>F)</td>
</tr>
<tr>
<td></td>
<td>o Resulting from an activating translocation of the c-myc oncogene on chromosome 8 to a promoter t(8;14 or 2;8 or 8;22)</td>
</tr>
<tr>
<td></td>
<td>o Three different types: (1) Sporadic (USA/Europe) ab mass w/ -EBV (2) Endemic (Africa) jaw mass w/ +EBV (3) Immunodeficient (HIV) variable location</td>
</tr>
<tr>
<td></td>
<td>o Extends particularly to BM (35%), CNS (15%), mesentery, gonads, kidney, breast</td>
</tr>
<tr>
<td></td>
<td>o Very rapid tumor growth therefore high r/o TLS</td>
</tr>
<tr>
<td></td>
<td>o Histology: three unique features (1) “starry sky” reflecting macrophages phagocytizing apoptotic tumor cells (2) near 100% MIB-1 score which reflects mitotic activity (3) +c-myc stain</td>
</tr>
<tr>
<td></td>
<td>o No surgery or XRT b/c dz is usually diffuse</td>
</tr>
<tr>
<td></td>
<td>- Lymphoblastic (LN involved form of ALL)</td>
</tr>
<tr>
<td></td>
<td>- Mantle Cell Lymphoma, Large Cell Immunoblastic (rare)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Aggressive Fast Growing</td>
<td></td>
</tr>
<tr>
<td>Curable</td>
<td></td>
</tr>
<tr>
<td>(5%)</td>
<td></td>
</tr>
<tr>
<td>Survival (weeks if unTx)</td>
<td></td>
</tr>
<tr>
<td>High Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>